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ORIGIN OF CHARGE OSCILLATION OF SURFACE 
DENSITY PROFILES OF INHOMOGENEOUS 

CHARGED FLUIDS USING THE 

MODEL 
SQUARE-GRADIENT DENSITY FUNCTIONAL 

M. IWAMATSU 
Chiba-Keizai University, 3-59-5 Todoroki-cho, Znage-ku, Chiba 263, Japan 

(Received 20 January, 1993) 

In order to clarify the origin of charge oscillation of the surface density profile of inhomogeneous charged 
fluids near an electrode observed in recent theoretical as well as computer simulation works, asymptotic 
density profiles of binary symmetric charged fluids are examined using a simple unified model based on 
the square-gradient (SG) density functional theory. The number density profile shows exponentially 
decaying monotonous tail expected from the SG approximation, while the charge density shows either 
monotonous or damped oscillating tail. Such charge oscillation is shown to arise from an interplay between 
the long-range Coulomb interaction and the short-range correlation of the charge density. Criterion of 
the appearance of an oscillatory tail based on the restricted primitive model model is examined. 

KEY WORDS: Surface density profile, electrolyte, fused salt 

1 INTRODUCTION 

There have already been a number of works on the density profile of inhomogeneous 
charged fluid such as electrolytes or fused salts near an electrode because it is related 
to the surface dipole layer or the electrical double layer and has been one of the 
oldest and most fundamental electrical problems in electro~hemistry'-~. Recent 
theoretical as well as computer simulation works2-' definitely demonstrated that 
there is a charge density oscillation in strongly coupled inhomogeneous charged fluids 
near an electrode. However, it seems that no explanation has been presented to clarify 
the origin of this oscillation. 

In order to understand the density profile of charged fluids near an electrode 
qualitatively, in this report we are going to examine the asymptotic density tails of 
symmetric charged fluids using the simple square-gradient (SG) density functional 
theory. 

2 SURFACE DENSITY PROFILE IN THE SQUARE-GRADIENT DENSITY 
FUNCTIONAL THEORY FOR SYMMETRIC CHARGED FLUIDS 

The SG density functional theory for general charged fluids was already developed 
a decade ago'. For 1:l electrolytes and fused salts, it is more convenient to use the 
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94 M. IWAMATSU 

number density N and the charge density Q defined by6 

N = (n+ + n-)/2, (2.la) 

Q = n, - n - ,  (2.lb) 

instead of the local density of cation n ,  and anion n- carrying electric charges 
e ,  = e and e-  = - e .  The density profiles N and Q are determined from the Euler- 
Lagrange equations6 

(2.2a) 

and the Poisson’s equation 

V . (r:V@) = - 4neQ, (2.3) 

where go is the Helmholtz free energy density of a uniform ionic mixture minus the 
electrostatic self-energy, e is the dielectric constant of the medium and CD is the 
electrostatic potential, and pN and pQ are the chemical potentials. The SG coefficients 
g2NN9 g2NQ and g2QQ are given by 

(2.4a) 

(2.4b) 

Using the non-Coulombic part of the Ornstein-Zernike direct correlation functions 
li,(r) defined by 

eiej 
k, TEr ’ ZiJ(r) = q j r )  + __ (2.5) 

where ciJ{r) is the direct correlation function of a uniform mixture with densities 
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SURFACE PROFILES OF CHARGED FLUIDS 95 

{n+,  n - }  and (i, j )  = { +, -}, the SG coefficients g2+ +,g2-  - and g2+ - are given by8 

g2 i j ( (n i } )  = ~ C",j(r)rz dr. 
lZBT 12 s 

Asymptotic forms of above Euler-Lagrange equations (2.2a, b) and Poisson's 
equation (2.3) for a flat interface perpendicular to z direction can be written as 

M = 0, 
d2M d2go 

292NN77 - 

d2@ 
= -4neQ, 

(2.7a) 

(2.7b) 

where we have linearized the equations for M = N -  N ,  and Q with N ,  being 
the bulk liquid number density. We have also neglected density dependence of the 
dielectric constant E. In order to decouple the equations for the number density 
M = N - N ,  and the charge density Q we have considered a symmetric case6 

All coefficients of the linear differential equations (2.7aH2.8), g Z N N ,  d2go/dN 2 ,  gZQQ 
and d2g0/dQ2,  are those for the bulk densities N = N , ,  and Q = 0. We should note 
that the external electrostatic field due to the uniform surface charge density B on 
the planar electrode at z = 0 is already included in (2.7a, b) and (2.8) through the 
boundary conditions to the Poisson's e q ~ a t i o n ~ - ~ :  

d@/dz(O) = -4n0/~, (2.10a) 

qz-+ al) = 0, (2. lob) 

where we have assumed that the Auid occupies a half space z > 0. 

transforms C",,(q) for a symmetric ionic fluid6 
Using the relationships between the second derivatives of go and the Fourier 
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96 h4. IWAMATSU 

= 0, (2.1 1 b) 

92% - (L + - - c', +(q = 0) - 2- -(4 = 0) + 2 2 ,  -(q = 0) 
1 

aQ2 4 n, n- 
- 

where zT is the isothermal compressibility, we can immediately obtain a mono- 
tonous exponential tail for the number density N from (2.7a) as 

N(z) -. N ,  - exp( - z/A,), (2.12) 

with 

corresponds to the bulk correlation length of the classical van der Waals theory. This 
result was already obtained by Telo da Gama et a/.'. 

The charge density Q ( z )  can be determined from a linear differential equation 
derived from (2.7b) and (2.8): 

(2.14) 

where we put 

d2q0jaQ2 = k B T / N ; ,  (2.15) 

from (2.1 lc), and N ;  is an effective density corrected by the short-range correlation 

(2.16a) N ;  = iVl,'( 1 - N,Sc"(q = 0)), 

with 

SE(q = 0)  = ( E +  +(q = 0) - E -  -(4 = 0) + 2 2 ,  -(q = 0))/4. (2.16b) 

Since we consider the charge density under the influence of a planar electrode, a 
special solution Q = 0 for the free liquid-vapor interface of exactly symmetric salts' 
will be excluded. 

When g2QQ = 0 and N ;  > 0 we have a monotonous exponential tail similar to the 
number density 
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SURFACE PROFILES OF CHARGED FLUIDS 91 

where 

AD = C 4 n e 2 N ; / ~ k B T ] - ' ,  (2.18) 

is the square of an effective Debye-Hiickel screening length. When N ; < O ,  on the 
other hand, we have a sinusoidal oscillating tail 

with 0 is an integration constant. 

and exponentially decaying tails. Introducing a new square length scale 
When g2QQ # 0 we have three kinds of solution; oscillating, damped osciIlating 

AQ = 'g2QQ N ; / k B T ,  (2.20) 

we have four regions for parameters AD and A, and corresponding solutions: 

(region I) 0 > AQ 2 AD (Oscillating tail) 

Q(z) - Q+sin(-z/p+ + 0,) + Q-sin(-z/p- + 0-), (2.2 1) 

with 

(2.22) 

and Q+ and 8, are integration constants. This solution shows undamped layering 
similar-to that expected in solid phase. When 0 > AQ = AD, we have a critical 
tail 

with 

where Q1,  Q2 and 0 are integration constants. 

(region 11) 0 > AD > AQ (Damped oscillating tail) 

where 

(2.25) 

(2.26a) 
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98 M. IWAMATSU 

and Qo and Q are integration constants. Surface density profile is a damped 
oscillating wave decaying into the bulk liquid phase with the decay length A and the 
wavelength p. 

(region 111) 0 < A D  < AQ (Damped oscillating tail) 

where 

with 

(region IV) 0 < AQ A D  (exponentially decaying tail) 

(2.27) 

(2.28a) 

(2.28b) 

(2.28) 

(2.29) 

where Q +  are integration constants. When 0 < AQ = AD, we have a critical tail 

with 

where Q1,  are integration constants. 
Existence of such an oscillatory tail was already predicted in the SG density 

functional theory of charged fluids in general and applied to liquid metal surfaces".". 
Returning to (2.lb), the oscillation of charge density Q(z) means that the oscillation 
of n+(z) and n-(z) are exactly out of phase, which seems to be implicit in theoretical 
results from more refined density functional models' and Monte Carlo simulations5. 
Finally we note that the decay length and the wave length of density oscillation are 
independent of the magnitude of the surface charge density on the electrode. This is 
certainly due to the crudeness of our model, however this model calculation indicates 
that those quantities will be relatively insensitive to the surface charge. 
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SURFACE PROFILES OF CHARGED FLUIDS 99 

3 APPLICATION TO THE RESTRICTED PRIMITIVE MODEL 

In order to see the condition of appearance of such an oscillating tail in more detail, 
we will consider a simple charged hard sphere mixturel2 of an equal hard sphere 
diameter 0 called the restricted primitive model (RPM). In this model molecular 
interactions between i, j molecules are given by 

with { i ,  j} = { + , - } and the direct correlation functions are written as7 

c + + (r)  = c - - (r)  = cs(r) + cD(r), (3.2a) 

c+ - (r)  = c-  +(r)  = cs(r) - C D ( r ) ,  (3.2b) 

where c&) describes the correlation of the number density while C,(r) describes that 
of the charge density. Writing’ 

we have 

for (2.4~) and 

SZ(q = 0) = 6c,(q = 0) = 6 c D ( r )  dr, s (3.5) 

for (2.16b). 
The simplest “mean field” approximation7 neglects the short range correlation of 

the charge density at all and sets 6c,(r) = 0. In this case g2Q4 = 0 and N ;  = N ,  > 0, 
then we always have a monotonous charge density tail Q(z) given by (2.17). 

This means that both the short-range correlation and the long-range Coulomb 
interaction are necessary to induce the charge density oscillation, which therefore 
results from the competition between packing effect and screening. 

A more realistic approximation which takes into account this short-range correla- 
tion is the mean spherical approximation (MSA)”, which considers the hard sphere 
excluded volume effect to the electrostatic energy: 

Io r > 0, 
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100 M. IWAMATSU 

where 
B = [l + x - J1 + 2x]/x. (3.7) 

Using traditional non-dimensional coupling parameters Q* and density p* defined 
by' 4.7 

Q* = (ez/.zak,T)"z, (3.8) 

p *  = N p 3 ,  (3.9) 

the Debye-Hiickel inverse screening length parameter x in (3.7) is given by 

x = Q* J 4 n p .  (3.10) 

In this MSA we have 

N,GF(q = 0) = xZf(x), (3.11a) 

with 
(3.1 1 b) 

(3.12a) 

g ( X )  = (1s - 24B + 10B2)/60, (3.12b) 

then, we can express two characteristic square lengths A, and AD as a function of x: 

1 - x2f(x) 
X2 

AD = CTz. 

(3.13a) 

(3.13b) 

Similarly all the decay lengths and the wave lengths A,, p+_,  A and p in (2.22), 
(2.26), (2.28) and (2.29) are expressed as a function of x if we scale the length by the 
hard sphere diameter CT. Then the charged fluid system is characterized by a single 
parameter x ranging from the small electrolyte regime to the large fused-salt regime. 
According to the magnitude of x, the asymptotic density tail is classified as 

(region 11) x > 1.8649 (damped oscillating tail), and 

(region 111) 1.8649 =- x > 1.2604 (damped oscillating tail), where 

(3.14a) 
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SURFACE PROFILES OF CHARGED FLUIDS 101 

(3.14b) 

(region VI) x c 1.2604 (exponentially decaying tail), where 

. (3.15) x2& !% 
= ( d 6(1 - x”(x)) 3(1 - x”(x))’ 

1 f (1 - 

The oscillating density wave is expected when x > 1.2604. This is compared’’ 
with x > $ which implies the existence of oscillations in the charge cloud about a 
fixed point ion13. The charge density oscillation is more easily excited for a planar 
perturbation. There is no solution for the inequality 0 > AQ > AD corresponding to 
the region I, and the solid-like charge density order is not expected. 

In Figure 1 we have plotted the decay lengths I, and I, and the wavelength p as 
a function of x. These results show generally narrow surface widths I, and 1, which 
may be a common feature of the SG model. In the strong coupling region x > 1.2604, 
we expect density stratification, whose layer-layer width np - 0 is reasonable magni- 
tude. These results based on a very simple model can be used as a guide to predict 
qualitatively whether we observe strong surface density oscillation. Actually x = 
1.2604 seems a reasonable estimate of the appearance of an oscillating tail because 
we usually have a monotonous tail for electrolytes for which x c 1.260414 while we 
have an oscillating tail for fused salts for which x >> 1.26M7. 

Figure 1 The decay lengths L, and 1, and the wave length p in unit of the hard sphere diameter u as 
a function of the Debye-Hiickel inverse screening length parameter x. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
1
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



102 M. IWAMATSU 

4 CONCLUDING REMARKS 

We note that our analysis is based entirely on the so called square-gradient 
approximation and is naturally limited to the asymptotic region far into the bulk 
liquid phase or to the critical fluid. Although the existence of the long-range - l/r6 
van der Waals interaction is known to produce l/r3 tailI4 rather than the classical 
exponential tail (2.12), such a correction will be small for the tail of the charge density 
Q for which much stronger Coulomb interaction is dominant. 

In the presence of an external hard wall, the surface density oscillation next to the 
wall is observed even in neutral single component fluids”. This oscillation does not 
arise from the long range Coulomb interaction considered in this paper but from the 
short range correlation of the number density originated in the packing effect’ 5,16. 

Inclusion of such correlation will produce oscillation not in the charge density Q but 
in the number density N ,  which however is beyond the ability of continuum 
approximations such as the square-gradient approximation. More complicated 
non-local theory‘ is necessary to account for such a fine structure next to the wall. 

Despite all these shortcomings our simple square-gradient model, we believe, did 
clarify the origin of layers of alternate positive and negative charged in charged fluids 
near an electrode. 
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